IL-33 receptor ST2 regulates the cognitive impairments associated with experimental cerebral malaria

نویسندگان

  • Flora Reverchon
  • Stéphane Mortaud
  • Maëliss Sivoyon
  • Isabelle Maillet
  • Anthony Laugeray
  • Jennifer Palomo
  • Céline Montécot
  • Améziane Herzine
  • Sandra Meme
  • William Meme
  • François Erard
  • Bernhard Ryffel
  • Arnaud Menuet
  • Valérie F J Quesniaux
چکیده

Cerebral malaria (CM) is associated with a high mortality rate and long-term neurocognitive impairment in survivors. The murine model of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA)-infection reproduces several of these features. We reported recently increased levels of IL-33 protein in brain undergoing ECM and the involvement of IL-33/ST2 pathway in ECM development. Here we show that PbA-infection induced early short term and spatial memory defects, prior to blood brain barrier (BBB) disruption, in wild-type mice, while ST2-deficient mice did not develop cognitive defects. PbA-induced neuroinflammation was reduced in ST2-deficient mice with low Ifng, Tnfa, Il1b, Il6, CXCL9, CXCL10 and Cd8a expression, associated with an absence of neurogenesis defects in hippocampus. PbA-infection triggered a dramatic increase of IL-33 expression by oligodendrocytes, through ST2 pathway. In vitro, IL-33/ST2 pathway induced microglia expression of IL-1β which in turn stimulated IL-33 expression by oligodendrocytes. These results highlight the IL-33/ST2 pathway ability to orchestrate microglia and oligodendrocytes responses at an early stage of PbA-infection, with an amplification loop between IL-1β and IL-33, responsible for an exacerbated neuroinflammation context and associated neurological and cognitive defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling.

The suppression of tumorigenicity 2/IL-33 (ST2/IL-33) pathway has been implicated in several immune and inflammatory diseases. ST2 is produced as 2 isoforms. The membrane-bound isoform (ST2L) induces an immune response when bound to its ligand, IL-33. The other isoform is a soluble protein (sST2) that is thought to be a decoy receptor for IL-33 signaling. Elevated sST2 levels in serum are assoc...

متن کامل

ST2 deletion enhances innate and acquired immunity to murine mammary carcinoma

ST2 is a member of the IL-1 receptor family and IL-33 was recently identified as its natural ligand. The IL-33/ST2 pathway regulates Th1/Th2 immune responses in autoimmune and inflammatory conditions, but the role of ST2 signaling in tumor growth and metastasis has not been investigated. We aimed to investigate whether ST2 gene deletion affects tumor appearance, growth, and metastasis, and anti...

متن کامل

A Novel Interleukin 33/ST2 Signaling Regulates Inflammatory Response in Human Corneal Epithelium

Interleukin (IL) 33, a member of IL-1 cytokine family, is well known to promote Th2 type immune responses by signaling through its receptor ST2. However, it is not clear whether ST2 is expressed by mucosal epithelium, and how it responds to IL-33 to induce inflammatory mediators. This study was to identify the presence and function of ST2 and explore the role of IL-33/ST2 signaling in regulatin...

متن کامل

Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33.

Hypertension increases the pressure load on the heart and is associated with a poorly understood chronic systemic inflammatory state. Interleukin 33 (IL-33) binds to membrane-bound ST2 (ST2L) and has antihypertrophic and antifibrotic effects in the myocardium. In contrast, soluble ST2 appears to act as a decoy receptor for IL-33, blocking myocardial and vascular benefits, and is a prognostic bi...

متن کامل

IL-33 attenuates the development of experimental autoimmune uveitis

Interleukin-33 (IL-33) is associated with several important immune-mediated disorders. However, its role in uveitis, an important eye inflammatory disease, is unknown. Here, we investigated the function of IL-33 in the development of experimental autoimmune uveitis (EAU). IL-33 and IL-33 receptor (ST2) were expressed in murine retinal pigment epithelial (RPE) cells in culture, and IL-33 increas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017